
Enabling Flexible Model-Based Manually
Controllable Compilation for CGRAs

PHD FORUM SUBMISSION

Felix Böseler
OFFIS - Institute for Information Technology

Oldenburg, Germany
felix.boeseler@offis.de

I. INTRODUCTION

The “power wall” is a well known problem in modern
microprocessor design [1]. Accelerators can be used to offload
computation-intensive kernels encountered in a wide range
of digital signal processing applications. An interesting ac-
celerator type is the so-called Coarse-Grained Reconfigurable
Array (CGRA). Through the parallel computation capabilities
on multiple granularities paired with partial specialization, a
CGRA can achieve very high energy efficiency [1].

In industrial development processes, experts from different
domains (e.g., control theory or hardware) often want to have
full control over the entire compilation process. For CGRAs,
this means full control beginning from the mathematical
kernel description down to the CGRA configuration bitstream.
Experts often have to manually guide and explore optimization
and lowering steps to achieve good CGRA utilization [2]. Fur-
thermore, CGRAs may be used in safety-critical applications
such as automotive engine control units (see [3]) where full
control over the compilation process increases traceability.

Therefore, the goal of this thesis is to enable a flexi-
ble model-based manually controllable compilation flow for
CGRAs as seen in Fig. 1. It shows that an external kernel
description (e.g., procedural description) is converted through
a parsing or transformation step into a high-level model.
This high-level model is described in a flexible model-based
language, which allows to gradually optimize and lower the
high-level model through multiple expert-driven transforma-
tion rules into a low-level model. The low-level model includes
technology mapping and is therefore in a form that enables
a Placing & Routing (P&R) step to assign concrete CGRA
resources to every model element. Finally, this placed model
is encoded into a configuration bitstream.

While related work such as the LLVM MLIR framework
[4] is very flexible, it is not designed for human readabil-
ity. Conversely, numerous compilation flows exists that are
understandable but focus on low-level abstractions or fixed
CGRA architectures (see [2]). The proposed flow is novel in
that it selects a careful balance between the understandability
and flexibility requirements to increase CGRA compilation
accessibility. Ensuring understandability allows full control for
domain experts so that transient partially lowered models can
be inspected. Allowing flexibility helps to decrease the already

CGRA

f(x) = ...

Parsing

Ext. kernel
description

Transform ...

Experts

Optimization, lowering, & mapping P&R Encoding

...

Rule
selection

Inspection

010010

Configuration
bitstream

High-level
model

Low-level
model

Transient
model

Placed
 model

Flexible model-based language

RQ1

RQ2

Heuristic
optimization driver

RQ3

RQ2
RQ4

Objectives/
constrains

Fig. 1. Flexible model-based manually controllable compilation flow

existing fragmentation of CGRA compilers.
Therefore, the main research question of this thesis is as

follows: how can a flexible model-based manually controllable
compilation flow from a mathematical kernel description to a
CGRA configuration be realized? To answer this main research
question, the next section details further research questions.

II. RESEARCH QUESTIONS

Fig. 1 shows the relation between the proposed compilation
flow and the research questions through blue rectangles. It
shows that RQ1 is concerned with the definition of the
necessary abstraction levels between the high-level model and
the low-level model. RQ2 examines how all transient models
between these abstraction levels can be described in a flexible
modeling language. However, it is crucial that this flexibility
does not hinder the understandability for experts.

The goal of RQ3 is to answer the question how an expert can
describe model transformations in an understandable way. This
question is closely related to the reusability of components
(see RQ3.1). Finally, RQ4 is concerned with the task how
heuristics, such as simulated annealing, can be integrated in
the compilation task. When applying such a heuristic opti-
mization, the experts should have the possibility to integrate
own objective preferences or constraints so that the manual
controllability can still be ensured.



The detailed descriptions of the research questions are given
below:

RQ1 What levels of abstraction are necessary to facilitate
understandability so that manual controllability in the
compilation flow can be achieved?

RQ2 Based on these levels of abstractions, how does a
flexible model-based graphical language look that
can describe transient optimization, lowering, and
technology mapping models?

RQ2.1 What is a useful execution semantic for such a
language?

RQ3 How should the model-to-model transformation flow
for optimizaton, lowering, and mapping look like?

RQ3.1 How can the model-based language support reusable
generic components?

RQ3.2 What transformation rule format enables understand-
able transformations of suitable capability?

RQ4 How can heuristics, such as simulated annealing, be
integrated into the compilation flow so that more
complex optimization, lowering, and mapping steps
can be realized.

III. CURRENT STATE

My current work regarding RQ1 and RQ2 is described
in [5] where a hierarchic Data Flow Graph (DFG) language
comparable to approaches such as [6] is proposed. However,
in contrast to [6], [5] provides the important possibility to
abstract from shared memory details for multidimensional data
in higher abstractions. [5] argues that the focus on kernels with
constant loop boundaries is sufficient for an initial DFG lan-
guage version. Furthermore, the paper briefly reviews CGRA
taxonomies and identifies the class of heterogeneous, statically
reconfigurable, and dynamically scheduled CGRAs (see [7])
as sensible CGRA target type for the proposed compilation
flow. This type of CGRA is called dataflow CGRA in [5].

My current work regarding transformation rules (see RQ3)
focuses on declarative pushout transformation rules as already
often found in model-driven development contexts (see [8]).
While first examinations suggest that such declarative rules
are well suited for lowering transformations, they may be less
suited for general optimization steps (e.g., loop unrolling). A
difficult decision is whether declarative rewriting rule exten-
sions such as multi-objects (see [8]) should be supported or
whether procedural rules should be employed as fallback for
such cases (see also [4]). This question is especially interesting
in the context of the understandability requirement of the
proposed compilation flow, since declarative rules in their full
expressiveness may offer decreased readibility.

IV. EVALUATION

The planned overall evaluation relies on case studies that
should evaluate the two main requirements of the overall
compilation flow – understandability and flexibility.

While I provide first conceptual compilation results in
[5], extended quantitative evaluations are required once the
progress of the thesis has further advanced. I plan to continue

focusing on the DFA CGRA (see [3]) because of its industrial
relevance. While this places an external dependency on the
thesis, the project partners have expressed explicit motivation
to continue collaboration beyond the current project duration.
Furthermore, hardware simulation possibilities for the targeted
CGRA exist.

To provide quantitative comparable results regarding un-
derstandability, interesting metrics are the required end-to-end
time for kernel compilation and CGRA utilization/performance
of produced CGRA configurations. The industrial partners
can provide a rich set of industrial relevant kernels such as
fast Fourier transformation, Gaussian process, and multi layer
perceptron. The CGRA configurations for these kernels are
currently mostly handcrafted individually. I think that the pro-
posed compilation flow can provide a measurable advantage
compared to the current handcrafted configuration approach.

The flexibility should be evaluated by focusing at least one
alternative CGRA. I identify as a main challenge to find a
contemporary dataflow CGRA with industrial relevance for
which also accessible hardware simulation possibilities exist.

Naturally, the developed compiler in this thesis has to be
compared to existing CGRA compilers. However, this proves
to be difficult and a main challenge of this thesis because
of the vast and rapidly evolving amount of CGRA compiler
frameworks. New CGRA compiler/architecture exploration
frameworks can be observed almost every year. Thus, it
is crucial to filter the existing set of compiler approaches
and only focus on the most similar approach for a direct
comparison. I would be especially happy to discuss ideas to
handle this tasks or to potentially alleviate this task through
adapted research questions.

REFERENCES

[1] L. Liu et. al, “A survey of coarse-grained reconfigurable architecture and
design: Taxonomy, challenges, and applications,” ACM Comput. Surv.,
vol. 52, no. 6, pp. 1–39, Oct. 2019, doi: 10.1145/3357375.

[2] J. M. P. Cardoso, P. C. Diniz, and M. Weinhardt, “Compiling for
reconfigurable computing: A survey,” ACM Comput. Surv., vol. 42, no. 4,
Jun. 2010, doi: 10.1145/1749603.1749604.

[3] J. Froemmer, N. Bannow, A. Aue, C. Grimm, and K. Schneider, “Flex-
ible data flow architecture for embedded hardware accelerators,” in
International Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP) 2019, Part I, 2020, pp. 33–47, doi: 10.1007/978-3-
030-38991-8 3.

[4] C. Lattner et al., “MLIR: Scaling compiler infrastructure for domain
specific computation,” in 2021 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), 2021, pp. 2–14, doi:
10.1109/CGO51591.2021.9370308.

[5] F. Böseler and J. Walter, “A flexible graph language for a model-based
semi-automatic CGRA compilation flow,” in Forum on specification &
Design Languages (FDL) 2023, Sep. 2023.

[6] G. Suba, “Hierarchical pipelining of nested loops in high-level synthesis,”
Periodica Polytechnica Electrical Engineering and Computer Science,
vol. 58 (3), p. 81–91, Jan. 2014, doi: 10.3311/PPee.7610.

[7] B. De Sutter, P. Raghavan, and A. Lambrechts, “Coarse-grained reconfig-
urable array architectures,” in Handbook of Signal Processing Systems,
S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and J. Takala, Eds.
New York, NY: Springer New York, 2013, pp. 553–592.

[8] R. Heckel, “Graph transformation in a nutshell,” Electronic Notes in
Theoretical Computer Science, vol. 148, no. 1, pp. 187–198, 2006, doi:
10.1016/j.entcs.2005.12.018.


