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Abstract—Efficient and timely calculations of Machine Learning (ML)

algorithms are essential for emerging technologies like autonomous
driving, the Internet of Things (IoT), and edge computing. One of the
primary ML techniques used in such systems is Convolutional Neural
Networks (CNNs), which demand high computational resources. This
requirement has led to the use of ML accelerators like GPGPUs to
meet design constraints. However, selecting the most suitable accelerator
involves Design Space Exploration (DSE), a process that is usually time-
consuming and requires significant manual effort.
Our work presents approaches to expedite the DSE process by identifying
the most appropriate GPGPU for CNN inferencing systems. We have
developed a quick and precise technique for forecasting the power and
performance of CNNs during inference, with a MAPE of 5.03% and
5.94%, respectively. Our approach empowers computer architects to
estimate power and performance in the early stages of development,
reducing the necessity for numerous prototypes. This saves time and
money while also improving the time-to-market period.

Index Terms—Energy Efficiency, Power and Performance Estimation,
Machine Learning

I. INTRODUCTION

Advancements in Machine Learning (ML) and Artificial Intel-
ligence (AI) have yielded impressive results. To ensure fast and
efficient calculations, Al accelerators are increasingly being utilized.
The latest developments include GPGPUs designed specifically for
ML training and inferencing, which can consume up to 700 watts
per GPGPU. As most High-Performance Computing (HPC) systems
come equipped with multiple GPUs per machine, the power con-
sumption of ML and Al systems presents new challenges [1]-[5].

An example of extreme power consumption in HPC can be
seen in the Summit, a supercomputer with 27,648 NVIDIA Volta
GPUs that consume 13 million watts [6]. However, by implementing
power savings of 5%, significant cost savings of up to 1 million
dollars can be achieved [7]. Smaller Internet of Things (IoT) devices
may experience increased power consumption when performing ML
inferencing. For example, object recognition on an Nvidia Jetson
TX1 can use up to 7 watts of power, but offloading the same task
to the cloud can reduce power consumption to 2 watts [8]. Hence,
offloading ML and Al workloads to the cloud can be a promising
power-saving solution for ML-enabled IoT applications. However,
the feasibility of offloading ML workloads to the cloud depends on
available bandwidth. In cases where offloading is not possible, local
execution may be necessary. These challenges make it difficult for
computer architects to design appropriate ML inferencing systems
due to the wide range of design options available.

There are different ways to explore design space for ML in-
ferencing computer architecture, but two main approaches stand
out: 1) simulation and 2) ML-based predictors. However, both have
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Fig. 1. Methodology for estimating performance and power has been adapted
from [2].

their drawbacks. For example, simulators like GPGPU-Sim or GPU-
ocelot run GPU applications on CPUs for simulation, which leads
to significantly slower simulations than on real devices due to CPUs
not having the same high parallelization ability as GPUs. ML-based
predictors aim to provide fast and accurate estimations, but most
require specific configuration and profiling of the application on a
real GPGPU first to collect performance counters. Since performance
counters are not standardized across all Nvidia GPUs, it is possible
that the required counter is unavailable or is collected differently than
in the original approach, making it impossible to apply the approach
or result in inaccurate results [8]. However, none of these approaches
consider the option to offload the ML workloads to cloud or edge
systems.

This work addresses the limitations of simulation and current
ML-based predictors for predicting the power and performance of
ML inferencing on GPGPUs. Our study presents recent approaches
to overcome these obstacles. Our contributions mainly include the
following:

o We developed several predictive models available for predicting
the power and performance of CNNs when running on GPGPUs
[11-[5].

o We developed a hybrid PTX Analyzer that can collect runtime-
dependent features for power and performance estimation with-
out executing on real GPUs. This solution should also overcome
the slow execution time of simulators [8].

II. POWER AND PERFORMANCE ESTIMATION

Figure 1 briefly overview our process for estimating power and
performance when developing ML models. To ensure accurate results,
we train multiple machine learning models (e.g., K-Nearest Neighbor,
Decision Tree, Random Forest Tree) for each specific task (i.e.,
power or performance prediction), which helps improve each model’s
accuracy. As predictions must be made during the early design stages,
we focus on not runtime-dependent features. This includes utilizing
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Fig. 2. Comparison of predicted and real power consumption for three CNNs with different frequencies between 397MHz and 1590MHz on the Nvidia

V100S GPGPU [5]

hardware specifications such as the size and factor of the GPGPU,
the number of cores, the frequency, and the available memory.
Additionally, we consider features that describe the ML application
(e.g., neural networks) that consist of varying layers and neurons. This
approach allows us to develop ML models that are both effective and
efficient [1]-[5].

Additionally, we have created a new tool called Hybrid PTX
Analyzer (HyPA) to account for the intricacies of the compiled ML
Model. This tool lets us determine the exact number of executed
instructions in the PTX without running the code on physical devices.
To achieve this, we simulate critical code sections such as loops
or if-statements to construct an accurate control flow graph that
encompasses all necessary instructions. Thus, we can also consider
runtime-dependent features without executing GPU applications on
actual devices [8].

III. EXPERIMETAL RESULTS.

In the following, we present power and performance estimation
results of ML model inferencing on GPGPUs based on [1]-[5].
The power prediction for various frequencies of the Nvidia V100S
is depicted in fig. 2 [5]. In our studies, the Random Forest Trees
achieve a Mean Absolute Percentage Error (MAPE) of 5.03% and a
R?-Score of 0.9561 for the power prediction for different CNNs at
different frequencies. This methodology can also be applied to other
GPUs, enabling the creation of predictive models for each GPU that
can forecast power usage for different Neural Networks at varying
frequencies.

The performance prediction (i.e., number of cycles) for different
Neural Networks is illustrated in fig. 3. As the results demonstrate,
the K-Nearest Neighbors Algorithm achieved a MAPE of 5.94% [2].
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Fig. 3. Prediction results for number of cycles [2].

original
Emm prediction

IPC
o © o N

IS

[N)

The results show that our methodology allows the generation
of fast and accurate predictive models for estimating power and
performance. This is beneficial for computer architects in navigating
the design space and identifying the optimal GPGPU.

IV. CONCLUSION AND FUTURE WORK

In our upcoming projects, we aim to incorporate optimization
techniques to search for the best GPGPU to enhance ML model
inference while considering factors such as limited power supply and
desired performance. Additionally, we intend to devise approaches
to discern whether offloading would adhere to the constraints or if
executing locally would be more advantageous. We have developed a
REST API for offloading ML workloads and are currently studying
the power and performance characteristics at various bandwidths and
latencies.

We plan to merge power and performance prediction for GPGPUs
with the findings from our offloading analysis. This will help us
identify the most suitable GPGPU for local execution. As a result,
computer architects and system designers will be able to reduce the
number of prototypes they need to build.
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