
  

 

I. INTRODUCTION 

 Battery technology innovation is pivotal for electric 
vehicles (EVs) to flourish. Battery DTs offer an 
unprecedented vantage point into battery behavior, 
empowering advanced decision-making for optimal EV 
operation. We present a customized DT architecture that 
facilitates precise estimation of SoC, SoH, and SoE, which 
are paramount for effective battery management [1]. We 
delve into an ingenious strategy that harmoniously 
amalgamates cloud and edge platforms, achieving the dual 
objectives of real-time insights and resilience against 
unpredictable cloud disruptions. This PhD research presents 
a comprehensive approach for battery DTs, introducing a 
customized architecture, novel edge-cloud partitioning, and 
validation using synthetic and real datasets. 

Figure I: Digital Twin Architecture 

 

II. DIGITAL TWIN ENHANCEMENT FOR 

MODERN BMSS 

While BMSs traditionally manage batteries, integrating 

Battery DTs extends their capabilities. Real-time insights 

into battery dynamics empower BMSs to make judicious 

decisions that go beyond immediate management. Battery 

DTs augment core BMS functions, accurately estimating 

State-of-Charge (SoC), State-of-Health (SoH), and State-

of-Energy (SoE). These insights facilitate proactive 

maintenance, adaptive controls, optimized charging, 

extensive scenario analysis, and predictive efficiency 

enhancements. 

 

 

a) DT Architecture: The typical DT architecture consists 

of three main layers: 

1. Hardware and Connectivity Layer: collects sensor data 

for preprocessing, permitting localized data usage or 

cloud forwarding. 

2. Twin Layer: Represents the virtual copy of the battery 

and is in the cloud. It includes a time-series database 

for storing battery data and running models to estimate 

SoX variables. 

3. Service Layer: Exports information to third parties, 

providing services like visualization and predictive 

maintenance. 

 

b) Accurate Battery Modeling: In the Twin Layer, battery 

models are vital to elucidate the interrelation of SoC, SoH, 

and SoE. While circuit-equivalent models and algorithmic 

approaches have limitations [2], data-driven strategies like 

machine learning overcome these by learning from 

historical data. Continuous training is essential to adapt to 

battery dynamics. Our proposed digital twin constructs SoX 

models through historical battery and discharge data, 

employing a data-driven approach. The EV collects 

measurements continuously, uploaded to the cloud. The 

cloud updates SoH and periodically retrains the SoC & SoE 

model, deployed to the EV. This iterative process ensures 

accurate SoX estimation and effective adaptation. 

 

c) Edge-Cloud Architecture: The combination of edge 

computing and cloud services presents an opportunity to 

enhance traditional BMS limitations. However, 

maintaining battery state models both in the cloud and at the 

edge is a challenge. This research introduces an edge-cloud 

architecture that efficiently collects edge data while 

utilizing cloud storage and services. It employs fixed time 

intervals for partitioning, adapting the threshold based on 

battery dynamics and characteristics. This architecture 

addresses precise SoC and SoE estimation and resilience 

against cloud disruptions. Continuous cloud SoH updates 

ensure accurate estimation, and the edge retains a recent 

model copy for estimation during cloud outages. The model 

synchronizes upon cloud reconnection for up-to-date 

insights. 

III. RESULT 

The study evaluated initial outcomes using three datasets: 

Sandia Battery Dataset [3], NASA Ames Prognostics 

Center of Excellence Randomized Battery Dataset [4], and 
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a simulated dataset [6]. The Sandia dataset examined 

commercial cells, exploring factors like temperature, depth 

of discharge, and discharge current up to 70% capacity. The 

NASA Ames dataset involved lithium-cobalt-oxide 

batteries subjected to varying charging and discharging 

currents. The simulated dataset was created using a battery 

model with diverse temperature and current profiles. Data 

underwent Coulomb Counting for determining SoC, SoE, 

and SoH. After refining, the dataset contained current, 

voltage, temperature, relative time, SoC, SoE, and SoH 

columns. Models, including Gradient Boosting Models 

(GBM) and Neural Networks Models (MLP, CNN, LSTM), 

were employed. Accuracy was gauged using metrics like 

root mean square error (RMSE) and mean absolute error 

(MAE). 

 

The efficacy of the proposed DT architecture was 

demonstrated by estimating SoH as seen in table I, SoC and 

SoE using models trained at varying SoH levels for the 

NASA and Sandia datasets. Figure II shows the result 

where a red solid line, trained at 73% SoH, closely mirrored 

the actual discharge profile with RMSE of 0.809% and 

4.363% for NASA and Sandia, respectively. Outdated 

models exhibited significant errors, underscoring the need 

for periodic retraining, and updating. This validates the 

importance of recurrent model adaptation and confirms the 

validity of the proposed architecture. 

 
Dataset Time(s) [Train + 

Inference] 
RMSE 

(%) 

MAE 

(%) 

R2 

NASA 0.579 + 0.090 0.0219 0.811 0.997 

Sandia 5.166 + 0.022 0.113 2.096 0.7825 

Simulated-

Data 

3.713 + 0.040 0.960 7.15  0.729 

Table I: SOH Model Performance 

 

Then a further approach conducting a Pareto analysis of the 

data-driven models [6], exploring various hyperparameters 

and input feature configurations. The analysis considers the 

trade-offs between error, time/energy, and memory to 

optimize the models to be deployed in both cloud and edge. 

a) NASA dataset      b) Sandia dataset 
Figure II: SoC and SoE discharge profiles comparison among 

SoC and SoE models trained in different SoH levels. 

 

Figure III presents the results demonstrating the flexibility 

of the data-driven approach to estimate SoX, with 

configurations varying approximately by a factor of 3 in 

latency, energy, and memory.  

               a) Time/Energy                                     b) Memory 
Figure III: Pareto-fronts obtained from the hyper-parameters’ 

exploration of data-driven models. 

IV. CONCLUSION & FUTURE WORKS 

The EV market requires advancements in battery 

technology. Battery Digital Twins (DTs) accurately 

replicate battery dynamics, enabling intelligent 

management, predictive maintenance, and exploratory 

analyses. This thesis presents a customized architecture for 

precise estimation of SoX variables. A novel division of DT 

tasks between cloud and edge platforms is proposed, 

supported by evidence from real-world datasets. Future 

work will include an in-depth detail about edge-cloud 

partitioning, connectivity, security & computing that will 

leverage the capabilities of Digital Twins to establish a 

robust foundation for a digital ecosystem that enhances 

battery performance and ensures long-term durability. 
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