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Abstract—The current development in the field of industrial
control systems is moving further and further in the direction
of distributed and increasingly complex structures. In order to
be able to model these, tools such as the IEC 61499 standard
come into play. But for such tools there is a lack of possibilities
to validate them, as the increasingly complex structure overtaxes
formal methods. Therefore, it needs a simulator for which it needs
a time model. For this time model, the measurement concept is
presented and evaluated, with the conclusion that it is sufficient
for a proof-of-concept.

I. INTRODUCTION

Although industrial control systems are becoming larger,
more distributed, and more complicated, they still must be val-
idated because they are part of a safety-critical infrastructure.
This can be accomplished, for example, by evaluating them
with tests on the target system. Given the high cost of testing
at this late stage, a solution to verification during design time
is required. Formal verification using analytical methods is one
option. Initial approaches exist, but they are overwhelmed by
the required complexity and scale.

Therefore, a simulative approach [1] for the IEC 61499
standard is proposed. The standard is a modelling language
for distributed industrial control systems. It describes a control
system model using function blocks. Each function block
inherits a simple state machine, a cpp service interface, or
is a composite block that inherits other function blocks. The
simulator is not only an implementation of the standard, but
also of the common IEC 61499 runtime Forte [2] to have
interpretations for undefinitions of the standard [3]. It is
written in SystemC and is designed to take advantage of
existing SystemC features for virtual integration testing. The
overarching purpose of that method is to validate temporal
behaviour using contract-based design. The advantage of the
simulator is the possibility to really perform functionalities and
calculations and thus to generate real execution paths with the
help of input sets.

In order to be able to simulate the temporal bahaviour of the
model sufficiently, a time model for the simulator is required.
For this purpose, execution times of function blocks are to be
measured on realistic hardware, as well as the communication
between the function blocks.

The procedure, in which the time model, is described
graphically in Fig. 1. The behaviour model is converted into a
simulator behaviour model. It is then extended by a temporal
model there. This is the result of a series of benchmark

testing on several hardware platforms. Predictions concerning
temporal behaviour, among other things, can be made based
on the simulation results.
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Fig. 1. The flow to enrich the runtime with a time model
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This paper presents the first approaches for a measurement
infrastructure to record time values on different hardware plat-
forms. In the Method chapter, this measurement infrastructure
is presented, followed by an initial evaluation. The findings
are then analysed, followed by a summary of future work and
current challenges.

II. METHOD

In the area of embedded systems, the measurement of
individual functional sections to generate a time model for
a simulation is a standard procedure. This procedure is
implemented in different ways and already exists for most
environments. For the IEC 61499 standard, however, there
is still a need for a specific method. Therefore, a suitable
measurement infrastructure will be presented here and an
evaluation will be performed to check whether the measured
values are meaningful enough.

A. Measurement infrasturcture

There are several ways to measure function blocks. For ex-
ample, Forte’s own tracing can be activated. This writes a trace
to the command line during execution for input and output
events, in which the block, the current time and whether it is
an incoming or outgoing event is shown. Another method is
the measurement by either an own Service Interface Function
Block (SFIB) that contains a measurement infrastructure and is
part of the model as an extra function block or a measurement
infrastructure as part of a SIFB [4].

The disadvantage of both variants is the additional time
influence of an FB as part of the complete execution, or the


mailto:sven.mehlhop@uol.de

influence of command line outputs during runtime. In addition,
the reusability of the console output is costly.

The proposed measurement infrastructure is implemented
as part of the runtime. It makes use of the fact that standard
functionalities that every FB must be able to do are available
as a C++ class. Thus, incoming and outgoing messages are all
processed in the same way before more specific functions are
implemented. It is at this point that a point in time is taken for
the measurement infrastructure described here. Therefore, the
temporal influence also remains low. There is an instance for
each FB in the model in which a previously defined number
of measurements are recorded. With the help of a Measure
FB designed for this purpose, the model is stopped after a
specified number of runs and the measurements are saved.
This is then added to the existing time model so that it can
serve as a time reference for the simulator.

B. Evaluation concept

The overall goal of the simulator is to estimate the ex-
ecution times of single function block ones and then use
this information in other models. To evaluate, we created a
reference sample consisting of three FBs (see fig. 2). These
FBs are measured both individually and as a full chain,
with each 10000 runs. The individual measurement consists
of the same experimental setup, where the one block to be
measured is triggered by E_Cycle and Measure terminates
the experiment and saves the measurement. The time between
the FBs is also recorded, as combination of communication
latency and Forte event scheduling impact. The measurement
time of the entire cycle is then compared to the sum of the
single execution times of the FBs and the communication
timings between them. The proof of concept is complete if
they are near to each other.

To evaluate the impact of the measurement infrastructure,
two identical models are run 10000 times each, once with
and once without the measurement infrastructure. Instead of
E_CYCLE FB, the cycle triggers itself. Following that, the
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Fig. 2. The model under evaluation

Since the influence of competing tasks and services on the
target platform falsifies the measurement results and makes
them no longer reproducible, measures are taken to limit these
influences.

A typical embedded system with the Tinkerboard is used
as hardware. One of the four cores of the board is isolated
so that only the Forte runtime runs on it. In addition, parallel
processes are terminated if possible and the frequency is set
static.

Since the first measurement results deviate observably from
the rest, a start-up time is implemented in the experimental
setup.

TABLE I
THE EXECUTION TIME OF THE DIFFERENT FBS AND THE THE MODEL
F_NOT | ED_FF_ 1 | E_CTU | Between Full
two FBs | model
Min 2.92 us 2.33 us 2.33 us 1.46ps | 10.79ps
Max 4.38 us 3.21ps 2.92 us 1.75ps | 13.71ps
Avg 3.68 us 2.74 ps 2.58 us 1.56pus | 11.77ps
std. Dev. | 0.517 0.254 0.192 0.138 0.741

III. EVALUATION AND FUTURE WORK

Table I shows the execution times of the individual FBs, the
elapsed time between two FBs and the complete measurement.
The minima, maxima, average and standard deviation were
measured in each case. If we compare the values and add the
latency between two FBs twice, we have an approximation to
the values of the entire model and thus a proof-of-concept.

The analysis of the impact of the measurement infrastructure
showed an influence of 0.033ps per run and is therefore
sufficiently low. The static setting of the CPU frequency had
a positive impact on the reproducibility of the measurement
results. Although higher frequencies allow a faster execu-
tion time, the standard deviation over several measurement
series is not reproducible. Presumably concurrent processes
still influence the measurement series despite the precautions.
Therefore, the target platform should be made more real-time
capable, e.g. by using an RTOS.

For a complete investigation, the latency between two FBs
should be investigated further. It is interesting to see what
influence the communication and scheduling procedures of the
forte have here.

Future work then consists of a closer look at ECC and SFIB
FBs. In ECCs, the measurement methodology presented allows
the algorithms of the individual algorithms to be measured
individually to the states of the state machine. A similar prin-
ciple applies to the algorithms in an SFIB. Since the simulator
implements the algorithms identically, the transisitons and
branches can also be simulated in the programme. Also, the
impact of the halting problem on the validation of a model
by the simulator should be investigated here. Another open
challenge for future consideration is the possible parallelism
of FBs.

As a conclusion to the overall concept, it is also necessary to
examine how the time model can be inserted into the simulator
and whether the results then also reflect the behaviour of the

runtime.
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